Loggers
Built-in loggers
- dagster._loggers.colored_console_logger
Core class for defining loggers.
Loggers are job-scoped logging handlers, which will be automatically invoked whenever dagster messages are logged from within a job.
Parameters:
- logger_fn (Callable[[InitLoggerContext], logging.Logger]) – User-provided function to
- config_schema (Optional[ConfigSchema]) – The schema for the config. Configuration data available in
- description (Optional[str]) – A human-readable description of this logger.
- dagster._loggers.json_console_logger
Core class for defining loggers.
Loggers are job-scoped logging handlers, which will be automatically invoked whenever dagster messages are logged from within a job.
Parameters:
- logger_fn (Callable[[InitLoggerContext], logging.Logger]) – User-provided function to
- config_schema (Optional[ConfigSchema]) – The schema for the config. Configuration data available in
- description (Optional[str]) – A human-readable description of this logger.
Logging from an @op
- class dagster.DagsterLogManager
Centralized dispatch for logging from user code.
Handles the construction of uniform structured log messages and passes them through to the underlying loggers/handlers.
An instance of the log manager is made available to ops as
context.log
. Users should not initialize instances of the log manager directly. To configure custom loggers, set thelogger_defs
argument in an @job decorator or when calling the to_job() method on aGraphDefinition
.The log manager inherits standard convenience methods like those exposed by the Python standard library
python:logging
module (i.e., within the body of an op,context.log.\{debug, info, warning, warn, error, critical, fatal}
).The underlying integer API can also be called directly using, e.g.
context.log.log(5, msg)
, and the log manager will delegate to thelog
method defined on each of the loggers it manages.User-defined custom log levels are not supported, and calls to, e.g.,
context.log.trace
orcontext.log.notice
will result in hard exceptions at runtime.
Defining custom loggers
- @dagster.logger
Define a logger.
The decorated function should accept an
InitLoggerContext
and return an instance ofpython:logging.Logger
. This function will become thelogger_fn
of an underlyingLoggerDefinition
.Parameters:
- config_schema (Optional[ConfigSchema]) – The schema for the config. Configuration data available in
- description (Optional[str]) – A human-readable description of the logger.
- class dagster.LoggerDefinition
Core class for defining loggers.
Loggers are job-scoped logging handlers, which will be automatically invoked whenever dagster messages are logged from within a job.
Parameters:
- logger_fn (Callable[[InitLoggerContext], logging.Logger]) – User-provided function to
- config_schema (Optional[ConfigSchema]) – The schema for the config. Configuration data available in
- description (Optional[str]) – A human-readable description of this logger.
- property config_schema
The schema for the logger’s config. Configuration data available in init_context.logger_config.
Type: Any
- property description
A human-readable description of the logger.
Type: Optional[str]
- property logger_fn
The function that will be invoked to instantiate the logger.
Type: Callable[[InitLoggerContext], logging.Logger]
- class dagster.InitLoggerContext
The context object available as the argument to the initialization function of a
dagster.LoggerDefinition
.Users should not instantiate this object directly. To construct an InitLoggerContext for testing purposes, use
dagster. build_init_logger_context()
.Example:
from dagster import logger, InitLoggerContext
@logger
def hello_world(init_context: InitLoggerContext):
...- property logger_config
The configuration data provided by the run config. The schema for this data is defined by
config_schema
on theLoggerDefinition
.
- property logger_def
The logger definition for the logger being constructed.
- property run_id
The ID for this run of the job.
- dagster.build_init_logger_context
Builds logger initialization context from provided parameters.
This function can be used to provide the context argument to the invocation of a logger definition.
Note that you may only specify one of pipeline_def and job_def.
Parameters:
- logger_config (Any) – The config to provide during initialization of logger.
- job_def (Optional[JobDefinition]) – The job definition that the logger will be used with.
Examples:
context = build_init_logger_context()
logger_to_init(context)